smartgrid.wrappers.reward_aggregator.MinRewardAggregator¶
- class smartgrid.wrappers.reward_aggregator.MinRewardAggregator(env: SmartGrid)[source]¶
Bases:
RewardAggregatorReturns the minimum of the rewards to scalarize.
This corresponds to some sort of “Aristotelian” ethics, in the sense that we put the focus on the reward function with the worst consequences.
Methods
__init__(env)Returns the class name of the wrapper.
close()Closes the wrapper and
env.get_wrapper_attr(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
render()Uses the
render()of theenvthat can be overwritten to change the returned data.reset(*[, seed, options])Uses the
reset()of theenvthat can be overwritten to change the returned data.reward(rewards)Transform multi-objective rewards into single-objective rewards.
step(action)Modifies the
envstep()reward usingself.reward().wrapper_spec(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
Return the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.Returns the
Envmetadata.Returns the
Envnp_randomattribute.Return the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.Returns the
Envrender_mode.Return the
Envreward_rangeunless overwritten then the wrapperreward_rangeis used.Returns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.Returns the base environment of the wrapper.
- property _np_random¶
This code will never be run due to __getattr__ being called prior this.
It seems that @property overwrites the variable (_np_random) meaning that __getattr__ gets called with the missing variable.
- property action_space: Space[ActType] | Space[WrapperActType]¶
Return the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.
- close()¶
Closes the wrapper and
env.
- get_wrapper_attr(name: str) Any¶
Gets an attribute from the wrapper and lower environments if name doesn’t exist in this object.
- Args:
name: The variable name to get
- Returns:
The variable with name in wrapper or lower environments
- property observation_space: Space[ObsType] | Space[WrapperObsType]¶
Return the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.
- render() RenderFrame | list[RenderFrame] | None¶
Uses the
render()of theenvthat can be overwritten to change the returned data.
- property render_mode: str | None¶
Returns the
Envrender_mode.
- reset(*, seed: int | None = None, options: dict[str, Any] | None = None) tuple[WrapperObsType, dict[str, Any]]¶
Uses the
reset()of theenvthat can be overwritten to change the returned data.
- reward(rewards: List[Dict[str, float]]) List[float][source]¶
Transform multi-objective rewards into single-objective rewards.
- Parameters:
rewards – A list of dicts, one dict for each learning agent. Each dict contains one or several rewards, indexed by their reward function’s name, e.g.,
{ 'fct1': 0.8, 'fct2': 0.4 }.- Returns:
A list of scalar rewards, one for each agent. The rewards are scalarized from the dict.
- property reward_range: tuple[SupportsFloat, SupportsFloat]¶
Return the
Envreward_rangeunless overwritten then the wrapperreward_rangeis used.
- property spec: EnvSpec | None¶
Returns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.
- step(action: ActType) tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]¶
Modifies the
envstep()reward usingself.reward().
- property unwrapped: Env[ObsType, ActType]¶
Returns the base environment of the wrapper.
This will be the bare
gymnasium.Envenvironment, underneath all layers of wrappers.
- classmethod wrapper_spec(**kwargs: Any) WrapperSpec¶
Generates a WrapperSpec for the wrappers.