"""
Reward based on the *affordability* moral value, promoting not paying too much.
"""
from smartgrid.rewards import Reward
from smartgrid.rewards.argumentation.situation import parse_situation
from ajar import (
JudgingAgent, judgment, AFDM, Argument
)
[docs]
class Affordability(Reward):
"""
Reward based on the *affordability* moral value, promoting not paying too much.
"""
name: str
judge: JudgingAgent
"""
The JudgingAgent that represents the implemented moral value.
It contains the argumentation graph (:py:class:`ajar.afdm.AFDM`) that stores
the arguments and attacks between them, as well as the transform function,
and performs the judgment over a given situation.
"""
decision: str = 'moral'
"""
Hardcoded decision to use for the judgment.
The AFDM framework that we use supports multiple decisions; in this current
version we only need to decide whether the action was *moral* or not.
Thus, we use an hardcoded identifier for the decision: it must be the same
when creating :py:class:`ajar.argument.Argument`\\s and when performing the
judgment!
"""
[docs]
def __init__(self, j_transform=None):
super().__init__()
if j_transform is None:
j_transform = judgment.j_simple
afdm = self._create_afdm()
self.judge = JudgingAgent('affordability', afdm, j_transform)
[docs]
def calculate(self, world, agent):
situation = parse_situation(world, agent)
return self.judge.judge(situation, self.decision)
def _create_afdm(self):
af = AFDM()
af.add_argument(Argument(
"good_comfort", "comfort above 98%",
lambda s: s["self_comfort"] >= 0.98
))
af.add_argument(Argument(
"average_comfort", "comfort above 91%",
lambda s: s["self_comfort"] > 0.91
))
af.add_argument(Argument(
"positive_payoff", "money earned by buying/selling energy is positive",
lambda s: s["payoff"] >= 0,
support=[self.decision]
))
af.add_argument(Argument(
"over_consume_1", "agent over-consumed more than 10% of its need",
lambda s: s["self_need"] * 1.10 < s["consumption"],
counter=[self.decision]
))
af.add_argument(Argument(
"over_consume_2", "agent over-consumed more than 20% of its need",
lambda s: s["self_need"] * 1.20 < s["consumption"],
counter=[self.decision]
))
af.add_argument(Argument(
"over_consume_3", "agent over-consumed more than 30% of its need",
lambda s: s["self_need"] * 1.30 < s["consumption"],
counter=[self.decision]
))
af.add_argument(Argument(
"buy_energy_1", "agent bought energy more than 10% of its need",
lambda s: s["buy"] > s["self_need"] * 0.1,
counter=[self.decision]
))
af.add_argument(Argument(
"buy_energy_2", "agent bought energy more than 30% of its need",
lambda s: s["buy"] > s["self_need"] * 0.3,
counter=[self.decision]
))
af.add_argument(Argument(
"buy_energy_3", "agent bought energy more than 50% of its need",
lambda s: s["buy"] > s["self_need"] * 0.5,
counter=[self.decision]
))
af.add_argument(Argument(
"buy_energy_4", "agent bought energy more than 75% of its need",
lambda s: s["buy"] > s["self_need"] * 0.75,
counter=[self.decision]
))
af.add_argument(Argument(
"not_buy_energy", "agent bought energy less than 10% of its need",
lambda s: s["buy"] <= s["self_need"] * 0.1,
support=[self.decision]
))
af.add_argument(Argument(
"bias", "bias when agent did not buy",
lambda s: True,
support=[self.decision]
))
af.add_argument(Argument(
"bad_comfort", "comfort less than 90%",
lambda s: s["self_comfort"] < 0.9
))
af.add_attack_relation("bad_comfort", "positive_payoff")
af.add_attack_relation("bad_comfort", "not_buy_energy")
af.add_attack_relation("average_comfort", "buy_energy_1")
af.add_attack_relation("over_consume_1", "good_comfort")
af.add_attack_relation("over_consume_2", "good_comfort")
af.add_attack_relation("over_consume_3", "good_comfort")
af.add_attack_relation("good_comfort", "buy_energy_1")
af.add_attack_relation("good_comfort", "buy_energy_2")
af.add_attack_relation("good_comfort", "buy_energy_3")
af.add_attack_relation("good_comfort", "buy_energy_4")
af.add_attack_relation("buy_energy_4", "bias")
af.add_attack_relation("positive_payoff", "buy_energy_1")
af.add_attack_relation("positive_payoff", "buy_energy_2")
af.add_attack_relation("positive_payoff", "buy_energy_3")
af.add_attack_relation("positive_payoff", "buy_energy_4")
return af